The Convergence of Structural and Statistical Pattern Recognition

Tibério Caetano

NICTA/Australian National University

ICPRAM, Vilamoura, Algarve, Portugal, 8 February 2012
Thanks to my collaborators

- L. Cheng
- Q. Le
- J. McAuley
- J. Petterson
- A. Ramisa
- A. Smola
Structural and Statistical Approaches to PR

- Statistical Pattern Recognition
 - Weakness: Simplistic representations (vectors)
 - Strength: Powerful and efficient manipulation of such representations (linear algebra)

- Structural Pattern Recognition
 - Strength: Complex representations (graphs, strings, taxonomies)
 - Weakness: Lack of efficient manipulation tools (discrete world is hard)

Can we have the best of both? Yes. This talk is a tour on some examples.
Structural and Statistical Approaches to PR

- **Statistical Pattern Recognition**
 - Weakness: Simplistic representations (vectors)
 - Strength: Powerful and efficient manipulation of such representations (linear algebra)

- **Structural Pattern Recognition**
 - Strength: Complex representations (graphs, strings, taxonomies)
 - Weakness: Lack of efficient manipulation tools (discrete world is hard)
Structural and Statistical Approaches to PR

- **Statistical Pattern Recognition**
 - Weakness: Simplistic representations (vectors)
 - Strength: Powerful and efficient manipulation of such representations (linear algebra)

- **Structural Pattern Recognition**
 - Strength: Complex representations (graphs, strings, taxonomies)
 - Weakness: Lack of efficient manipulation tools (discrete world is hard)

Can we have the best of both?
Structural and Statistical Approaches to PR

- **Statistical Pattern Recognition**
 - Weakness: Simplistic representations (vectors)
 - Strength: Powerful and efficient manipulation of such representations (linear algebra)

- **Structural Pattern Recognition**
 - Strength: Complex representations (graphs, strings, taxonomies)
 - Weakness: Lack of efficient manipulation tools (discrete world is hard)

Can we have the best of both?

Yes. This talk is a tour on some examples.
Outline

- Part I: The Structured Prediction Paradigm
- Part II: Structured Prediction in Action
 - Example 1: Learning to predict matchings
 - Example 2: Learning image taxonomies
 - Example 3: Learning to predict sets
- Future Directions
Part I:
The Structured Prediction Paradigm
Goal of pattern recognition: find predictor f

\[f : \mathcal{X} \rightarrow \mathcal{Y} \]

where \mathcal{X} is arbitrary and \mathcal{Y} is discrete and finite.
Structured Prediction

- \(\mathcal{Y} \) is discrete but grows exponentially with the number of input variables.
The Supervised Learning approach to PR

- Assume you have corresponding instances from \mathcal{X} and \mathcal{Y}:
 $\{x^n, y^n\}$

 → Search for f that is consistent with these correspondences
 → Constrain f to be simple

\[
\text{argmin}_f \sum_n \ell(y^n, f(x^n)) + \Omega(f)
\]

- $f(x) \rightarrow$ prediction for input x
- $\ell(y, f(x)) \rightarrow$ loss incurred when predicting $f(x)$ instead of y
- $\Omega(f) \rightarrow$ penalty for complexity of f (regularizer)
Linear Predictors

- Standard assumption: f is a linear predictor of the form

$$f(x) \in \operatorname*{argmax}_{y \in Y} \langle \phi(x, y), \theta \rangle$$

- $\phi(x, y)$: arbitrary joint feature map (can be ∞-dimensional)
- θ: parameterization
- $\langle \cdot, \cdot \rangle$: inner product

- Since Y is exponentially large, computing $f(x)$ is a non-trivial combinatorial optimization problem. Hardness depends on ϕ
The optimization problem now becomes

\[
\argmin_{\theta} \sum_{n} \ell(y^n, f_{\phi}(x^n; \theta)) + \Omega(\theta)
\]

- Design parameters: \(\ell, \phi \) and \(\Omega \)
- In this talk I focus only on \(\ell \) and \(\phi \)
- I will fix \(\Omega(\theta) = \lambda \|\theta\|^2 \)
The optimization problem now becomes

$$\arg\min_{\theta} \sum_n \ell(y^n, f_\phi(x^n; \theta)) + \Omega(\theta)$$

- Design parameters: ℓ, ϕ and Ω
- In this talk I focus only on ℓ and ϕ
- I will fix $\Omega(\theta) = \lambda \|\theta\|^2$

(Francis will talk about structure in Ω)
The optimization problem now becomes

\[\argmin_{\theta} \sum_{n} \ell(y^n, f_\phi(x^n; \theta)) + \Omega(\theta) \]

Design parameters: \(\ell, \phi \) and \(\Omega \)

In this talk I focus only on \(\ell \) and \(\phi \)

I will fix \(\Omega(\theta) = \lambda \|\theta\|^2 \)

(Francis will talk about structure in \(\Omega \))

Much of ML is about designing \(\ell, \phi \) and \(\Omega \) and optimization algorithms to solve the resulting problem
Structural + Statistical PR

- We have a data-driven, statistical formulation
- ϕ will be designed so as to encode rich structures
- ℓ will be designed so as to compare structures in terms of which performance criterion we care about
The Optimization is Hard

$$\arg\min_\theta \sum_n \ell(y^n, f(x^n; \theta)) + \lambda \|\theta\|^2$$

- $\ell(y^n, f(x^n; \theta))$ only takes finitely many values (since Y is finite)
- For θ continuous, we therefore have a piecewise-constant optimization problem \rightarrow hard!
- For a given pair (x^n, y^n), there are uncountably many θ with precisely the same loss $\ell(y^n, f(x^n; \theta))$
Relaxation: Convex Upper Bound

\[
[\theta^*, \xi^*] = \arg\min_{\theta, \xi} \left[\sum_n \xi_n + \lambda \|\theta\|^2 \right]
\]

s.t. \(\langle \phi(x_n, y^n), \theta \rangle - \langle \phi(x_n, y), \theta \rangle \geq \ell(y, y^n) - \xi_n \)
\[\xi_n \geq 0 \]
\[\forall n, y \in \mathcal{Y} \]

Theorem: \(\ell(y^*_n, y^n) \leq \xi^*_n \)

where \(y^*_n = \arg\max_y \langle \phi(x^n, y), \theta^* \rangle \)

[Tsochantaridis et al. JMLR '05]
Relaxation: Convex Upper Bound

\[
[\theta^*, \xi^*] = \arg\min_{\theta, \xi} \left[\sum_n \xi_n + \lambda \|\theta\|^2 \right]
\]

s.t. \[\langle \phi(x^n, y^n), \theta \rangle - \langle \phi(x^n, y), \theta \rangle \geq \ell(y, y^n) - \xi_n \]
\[\xi_n \geq 0 \]
\[\forall n, \forall y \in Y \]
Relaxation: Convex Upper Bound

\[[\theta^*, \xi^*] = \arg \min_{\theta, \xi} \left[\sum_n \xi_n + \lambda \|\theta\|^2 \right] \]

s.t. \(\langle \phi(x^n, y^n), \theta \rangle - \langle \phi(x^n, y), \theta \rangle \geq \ell(y, y^n) - \xi_n \)

\(\xi_n \geq 0 \)

\(\forall n, \forall y \in Y \)
Relaxation: Convex Upper Bound

\[
[\theta^*, \xi^*] = \underset{\theta, \xi}{\text{argmin}} \left[\sum_n \xi_n + \lambda \|\theta\|^2 \right]
\]

s.t. \hspace{1cm} \langle \phi(x^n, y^n), \theta \rangle - \langle \phi(x^n, y), \theta \rangle \geq \ell(y, y^n) - \xi_n

\xi_n \geq 0

\forall n, \forall y \in Y

Exponentially many constraints!
Solution: Constraint Generation

- We can proceed by constraint generation.
- Start with no constraints and iteratively add most violated constraint for the current solution.
- ϵ-approximation to optimal solution in $O(\epsilon^{-1})$ iterations.
Solution: Constraint Generation

- Most violated constraint: y that maximizes violation gap ξ

$$y_{*n} = \arg\max_y \xi_n(y)$$

$$= \arg\max_y [\ell(y, y^n) + \langle \phi(x^n, y), \theta \rangle]$$
Solution: Constraint Generation

\[[\theta^1, \xi^1] = \arg\min_{\theta, \xi} \left[\sum_n \xi_n + \lambda \|\theta\|^2 \right] \]

s.t.

\[\langle \phi(x^n, y^n), \theta \rangle - \langle \phi(x^n, y^0), \theta \rangle \geq \ell(y^0, y^n) - \xi_n \]
\[
[\theta^2, \xi^2] = \arg\min_{\theta, \xi} \left[\sum_n \xi_n + \lambda \|\theta\|^2 \right]
\]
s.t.
\[
\langle \phi(x^n, y^n), \theta \rangle - \langle \phi(x^n, y^0_\ast), \theta \rangle \geq \ell(y^0_\ast, y^n) - \xi_n
\]
\[
\langle \phi(x^n, y^n), \theta \rangle - \langle \phi(x^n, y^1_\ast), \theta \rangle \geq \ell(y^1_\ast, y^n) - \xi_n
\]
Solution: Constraint Generation

$$[\theta^3, \xi^3] = \arg\min_{\theta, \xi} \left[\sum_n \xi_n + \lambda \|\theta\|^2 \right]$$

s.t.

$$\langle \phi(x^n, y^n), \theta \rangle - \langle \phi(x^n, y_*^0), \theta \rangle \geq \ell(y_*^0, y^n) - \xi_n$$

$$\langle \phi(x^n, y^n), \theta \rangle - \langle \phi(x^n, y_*^1), \theta \rangle \geq \ell(y_*^1, y^n) - \xi_n$$

$$\langle \phi(x^n, y^n), \theta \rangle - \langle \phi(x^n, y_*^2), \theta \rangle \geq \ell(y_*^2, y^n) - \xi_n$$
Solution: Constraint Generation

\[
\begin{align*}
[\theta^{t+1}, \xi^{t+1}] &= \arg \min_{\theta, \xi} \left[\sum_n \xi_n + \lambda \|\theta\|^2 \right] \\
\text{s.t.} \\
&\langle \phi(x^n, y^n), \theta \rangle - \langle \phi(x^n, y^0_*), \theta \rangle \geq \ell(y^0_*, y^n) - \xi_n \\
&\langle \phi(x^n, y^n), \theta \rangle - \langle \phi(x^n, y^1_*), \theta \rangle \geq \ell(y^1_*, y^n) - \xi_n \\
&\langle \phi(x^n, y^n), \theta \rangle - \langle \phi(x^n, y^2_*), \theta \rangle \geq \ell(y^2_*, y^n) - \xi_n \\
&\cdots \\
&\langle \phi(x^n, y^n), \theta \rangle - \langle \phi(x^n, y^t_*), \theta \rangle \geq \ell(y^t_*, y^n) - \xi_n
\end{align*}
\]
In summary, you have to:

- Specify ℓ and ϕ that make sense for your problem
- Find an efficient algorithm to solve

$$\arg\max_y [\ell(y, y^n) + \langle \phi(x^n, y), \theta \rangle]$$
Part II:
Structured Prediction in Action
Example 1:
Learning Graph Matching

Joint work with J. McAuley, L. Cheng, Q. Le and A. Smola
Example 1:
Learning Graph Matching
Graph Matching

- Classical problem in Structural PR
- Given two graphs $G = (V, E)$ and $G' = (V', E')$
- Given attributes of vertices: $v : V \rightarrow \mathbb{R}^n$
- Given attributes of edges: $e : E \rightarrow \mathbb{R}^n$
- Problem: Find a ‘consistent’ set of correspondences C between the vertices of G and G': $C \subseteq V \times V'$
- Typical assumption: C is an injective function, or a one-to-one mapping (can be relaxed).
Graph Matching

- Most popular formulation: Quadratic Assignment Problem (QAP)
- Assemble ‘Compatibility Function’ or ‘Affinity Function’ between pairs of associations:

$$A_{ijkl} = f(v_i, v_j, v_k, v_l, e_{ij}, e_{kl})$$

- Solution space: set of permutation matrices y:
 $$\mathcal{Y} = \{ y : y_{ij} \in \{0, 1\}, y1 = 1, y^T 1 = 1 \}$$
- Goal: solve quadratic assignment problem:

$$\arg\max_{y \in \mathcal{Y}} \sum_{ijkl} A_{ijkl} y_{ik} y_{jl}$$
Graph Matching

- Most popular formulation: Quadratic Assignment Problem (QAP)
- Assemble ‘Compatibility Function’ or ‘Affinity Function’ between pairs of associations:

\[A_{ijkl} = f(v_i, v_j, v_k, v_l, e_{ij}, e_{kl}) \]

- Solution space: set of permutation matrices \(y \):

\[y = \{ y : y_{ij} \in \{0, 1\}, y_1 = 1, y^T1 = 1 \} \]

- Goal: solve quadratic assignment problem:

\[\arg\max_{y \in Y} \sum_{ijkl} A_{ijkl} y_{ik} y_{jl} \]

\(\text{NP-hard!} \)
Lots of algorithms to find an approximate solution to QAP:

[Zaslavskiy et al. '09], [Gold and Rangarajan '06], [Pelillo '99],
[Wilson and Hancock '97], [Messmer and Bunke '98],
[Leordeanu and Hebert '05], [Cour et al. '06], [Caelli and Kosinov '02], [Caetano et al. '04]

... 100's of papers
Graph Matching

- **Lots** of algorithms to find an approximate solution to QAP:

 [Zaslavskiy et al. '09], [Gold and Rangarajan '06], [Pelillo '99], [Wilson and Hancock '97], [Messmer and Bunke '98], [Leordeanu and Hebert '05], [Cour et al. '06], [Caelli and Kosinov '02], [Caetano et al. '04]

 ... 100's of papers

- But... **do we really need** QAP?
Graph Matching

- Isomorphism easily modeled as QAP: $A_{ijkl} = e_{ij}e_{kl}$
 ($e_{ij} \in \{0, 1\}$, $e_{ij} = 1$ iff there is an edge between i and j)

However, if we use the right features, we can solve isomorphism as a linear assignment problem (LAP): argmax $y \sum ikd_{ik}y_{ik}$, where $d_{ik} = \text{degree}(i) = \text{degree}(k)$. LAP is polynomial!
Graph Matching

- Isomorphism easily modeled as QAP: $A_{ijkl} = e_{ij}e_{kl}$ ($e_{ij} \in \{0, 1\}$, $e_{ij} = 1$ iff there is an edge between i and j)

- However, if we use the right features, we can solve isomorphism as a linear assignment problem (LAP): $\arg\max_y \sum_{ik} d_{ik}y_{ik}$, where $d_{ik} = [\text{degree}(i) = \text{degree}(k)]$. LAP is polynomial!
Graph Matching

- **Problem:** If we have symmetries, then LAP will not recover the results of QAP
Graph Matching

- **Problem:** If we have symmetries, then LAP will not recover the results of QAP

- Obvious question: given a real, complex graph matching problem, is it possible to find measurements such that LAP gives the same solution as QAP?

▶ Yes: use data to brake symmetry

▶ Since real graphs contain rich vertex and edge attributes, there probably exist measurements of a graph that can make LAP produce the same results as QAP.

▶ Let's find them through machine learning!
Graph Matching

- **Problem:** If we have symmetries, then LAP will not recover the results of QAP

- Obvious question: given a real, complex graph matching problem, is it possible to find measurements such that LAP gives the same solution as QAP?

- **Yes:** use data to brake symmetry
Graph Matching

- **Problem:** If we have symmetries, then LAP will not recover the results of QAP

- Obvious question: given a real, complex graph matching problem, is it possible to find measurements such that LAP gives the same solution as QAP?

- **Yes:** use data to brake symmetry

- Since real graphs contain rich vertex and edge attributes, there probably exist measurements of a graph that can make LAP produce the same results as QAP.

- Let’s find them through machine learning!
Learning Graph Matching

- Let’s parameterize the graph attributes (and any other measurements of the graph attributes)

\[A_{ijkl} = f(v_i, v_j, v_k, v_l, e_{ij}, e_{kl}, \theta) \]

- Let’s manually provide the correct matchings for several graph matching problems

- Let’s estimate \(\theta \) so as to minimize some matching loss in the training matches (plus regularization)

[Caetano et al. ICCV’07, PAMI’09]
Loss, Feature Map and Constraint Generation

- $\ell(y, \bar{y}) = 1 - \frac{\langle y, \bar{y} \rangle}{\langle y, y \rangle}$: fraction of incorrect correspondences

- $\phi(x^n, y) = \sum_{ij} y_{ij} h_{ij}(G^n, G'^n)$, where h is any vector of measurements of the graphs G and G' from the ‘perspective’ of vertices i and j (for example one of the entries in h_{ij} can be $[\text{degree}(i) = \text{degree}(j)]$)

- Since both ℓ and ϕ are linear in y, constraint generation becomes a LAP:

$$\text{argmax} \sum_{ij} c^n_{ij} y_{ij}$$

where $c^n_{ij} = \langle h^n_{ij}, \theta \rangle + y^n_{ij} / \langle y^n_{ij}, y^n_{ij} \rangle$
Results on CMU ‘Hotel’ dataset

Before Learning:

After Learning:

RED: Mistakes
Results

House (baseline = 90)

- Linear
- Linear+Learning
- Quadratic
- Quadratic+Learning
- Quadratic normalisation 0.00001
- SMAC (MATLAB)
Example 2:
Learning Image Taxonomies

Joint work with J. McAuley and A. Ramisa
mammal → placental → carnivore → canine → dog → working dog → husky

vehicle → craft → watercraft → sailing vessel → sailboat → trimaran
Data and Annotation

- **ImageNet** dataset

- Each image manually annotated with only **one** category

- Each image often contains **more than one category** though

- Categories are organised in a taxonomy tree
The Loss Function

- The loss should account for the imperfect labelling

- If prediction is ‘cat’ in an image with both dogs and cats, but which is labeled as ‘dog’, the prediction should still be considered correct

\[\ell(Y, y_n) = \min_{y \in Y} d(y, y_n) \]

- Y is the set of 5 predicted categories; y is one of them
- y_n is the annotated category
- $d(y, y_n)$ is the distance between node y and the nearest common ancestor between y and y_n
The Loss Function

- The loss should account for the imperfect labelling

- If prediction is ‘cat’ in an image with both dogs and cats, but which is labeled as ‘dog’, the prediction should still be considered correct

- **Imagenet Competition**: Organisers proposed the following error measure:
 - An algorithm is allowed to predict 5 categories
 - The loss of a prediction is:

 \[
 \ell(Y, y^n) = \min_{y \in Y} d(y, y^n)
 \]
The Loss Function

- The loss should account for the imperfect labelling

- If prediction is ‘cat’ in an image with both dogs and cats, but which is labeled as ‘dog’, the prediction should still be considered correct

- **Imagenet Competition**: Organisers proposed the following error measure:
 - An algorithm is allowed to predict 5 categories
 - The loss of a prediction is:
 \[
 \ell(Y, y^n) = \min_{y \in Y} d(y, y^n)
 \]
 - \(Y\) is the set of 5 predicted categories; \(y\) is one of them
 - \(y^n\) is the annotated category
 - \(d(y, y^n)\) is the distance between node \(y\) and the nearest common ancestor between \(y\) and \(y^n\)
\[d(y, y^n) = 2 \]
Our Approach

- We directly optimize the competition error measure (loss function)
- We again use the convex upper bound trick
- Constraint generation needs a dedicated algorithm
Constraint Generation

\[
\hat{Y}^n = \arg\max_{Y \in y} \left\{ \min_{y \in Y} d(y, y^n) + \sum_{y \in Y} \langle \phi(x^n, y), \theta \rangle \right\}
\]

- Needs a dedicated algorithm. We developed an algorithm that is exact and efficient.

[McAuley, Ramisa and Caetano EMMCVPR'11]
Results: 1024-dimensional feature vector

- Approach: re-weight parameters obtained with binary SVMs by competition winners [Perronin and Sanchez ’11] using the structured loss

![Graphs showing reweighting of 1024 dimensional features and training error reduction with latent variables.]

<table>
<thead>
<tr>
<th></th>
<th>1nn</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before learning</td>
<td>11.35</td>
<td>9.29</td>
<td>8.08</td>
<td>7.25</td>
<td>6.64</td>
</tr>
<tr>
<td>After learning</td>
<td>10.88</td>
<td>8.85</td>
<td>7.71</td>
<td>6.93</td>
<td>6.36</td>
</tr>
</tbody>
</table>
Results: 4096-dimensional feature vector

Many additional results upcoming

[McAuley, Ramisa and Caetano ’12]
Example 3:
Learning to Predict Sets

Joint work with J. Petterson
Predicting sets

- Example: Image Tagging
- Input: Image
- Output: A set of tags
- Tag vocabulary of size \(V \)
- \(2^V \) possible outputs
Predicting sets

chess, WTC, NY

Kangaroo, Sun, Sea, Australia

crocodile, water, green
Predicting sets

- It’s important to predict the correct labels (recall)
- It’s important not to predict incorrect labels (precision)
- F-score: harmonic mean of precision and recall
Loss Function

- $y \in \{0, 1\}^V$ indicates which labels are predicted

- Recall and Precision:

 \[R = \frac{y^T \bar{y}}{y^T y} \quad \quad P = \frac{\bar{y}^T \bar{y}}{\bar{y}^T \bar{y}} \]

- F-score is the harmonic mean of precision and recall, so a corresponding loss is

 \[\ell_F(y, \bar{y}) = 1 - \frac{2PR}{P + R} = 1 - \left[\frac{2y^T \bar{y}}{y^T y + \bar{y}^T \bar{y}} \right] \]

 \(F\)-score
It’s important to have parameters associating the input image with individual tags (blue images more likely to have sky tag) [Petterson and Caetano NIPS’10]

In addition we would like to explicitly model tag dependencies (if there is strong evidence for tag ship then tag ocean should become more likely) [Petterson and Caetano NIPS’11]

We encode in ϕ both unary tag features and pairwise tag dependencies
Constraint Generation

- If we constraint tag dependencies to be \textit{submodular}, then we can find an approximation algorithm for constraint generation which is provably very accurate.

- This basically means that we can model positive pairwise correlations, i.e., the fact that \texttt{wheel} and \texttt{car} co-occur more often than not.

- For generic pairwise dependencies, constraint generation is completely intractable.
Constraint Generation

- Constraint generation is an integer quadratic program
 \[y = \arg \max_{y} y^T A(y) y \]

- Off-diagonal elements of \(A \) are forced to be **positive** (submodularity) and are independent of \(y \)

- **Certain elements** of the diagonal of \(A \) depend on the cardinality of \(y \), \(\sum_i y_i \)

- This unique setting requires a dedicated algorithm [Petterson and Caetano NIPS’11]
Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Ours</th>
<th>CCA</th>
<th>CC</th>
<th>BM</th>
<th>SM</th>
<th>MS</th>
<th>ECC</th>
<th>EBM</th>
<th>EPS</th>
<th>RAKEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast</td>
<td>0.440</td>
<td>0.346</td>
<td>0.346</td>
<td>0.326</td>
<td>0.327</td>
<td>0.331</td>
<td>0.362</td>
<td>0.364</td>
<td>0.420</td>
<td>0.413</td>
</tr>
<tr>
<td>Scene</td>
<td>0.671</td>
<td>0.374</td>
<td>0.696</td>
<td>0.685</td>
<td>0.666</td>
<td>0.694</td>
<td>0.742</td>
<td>0.729</td>
<td>0.763</td>
<td>0.750</td>
</tr>
<tr>
<td>Medical</td>
<td>0.420</td>
<td>-</td>
<td>0.377</td>
<td>0.364</td>
<td>0.321</td>
<td>0.370</td>
<td>0.386</td>
<td>0.382</td>
<td>0.324</td>
<td>0.377</td>
</tr>
<tr>
<td>Enron</td>
<td>0.243</td>
<td>-</td>
<td>0.198</td>
<td>0.197</td>
<td>0.144</td>
<td>0.198</td>
<td>0.201</td>
<td>0.201</td>
<td>0.155</td>
<td>0.206</td>
</tr>
</tbody>
</table>

[Peterson and Caetano NIPS’10]
Results

% of unary features used for training

F-Score

yeast

Ours
RML
ML-KNN
RaKEL
BR

[Petterson and Caetano NIPS’11]
Summary

- Structural and Statistical Pattern Recognition can coexist

- Structured prediction seems to be a good starting point

- The optimization of structured losses with structured feature maps is possible and improves over non-structured formulations

- Tractable classes of combinatorial optimization problems can deliver basically the same results as non-tractable classes if we use statistics to estimate the objective function from data (such as replacing QAP for LAP formulations in graph matching)
Summary

- Structural and Statistical Pattern Recognition can coexist

- Structured prediction seems to be a good starting point

- The optimization of structured losses with structured feature maps is possible and improves over non-structured formulations

- Tractable classes of combinatorial optimization problems can deliver basically the same results as non-tractable classes if we use statistics to estimate the objective function from data (such as replacing QAP for LAP formulations in graph matching)
Future Directions
Future Directions

- Structured prediction should be seen as a somewhat primitive attempt to **incorporate Statistics into Optimization**

- What we are really trying to do is to **estimate from data which optimization problem we should be solving at prediction time**

- Optimization is **deduction**, Statistical Inference is **induction**. Intelligence relies on both. If we make serious progress in unifying these fields, we may have a conceptually **complete** basis for Artificial Intelligence, which may lead to AI systems with human-like capabilities and beyond.